About Semiconductors & Microelectronics

The Semiconductors & Microelectronics sector is rapidly growing across the globe, due to an ever-increasing demand for use of these components in technology in a range of different industries. These technology brands use cleanrooms in their production facilities to help ensure that their sensitive products are unaffected by dust and other contaminants during the manufacturing process.

Many Semiconductor & Microelectronics facilities have different strategies and requirements to help maximise the protection of their components.   We can supply panel finishes with an array of different surface resistances from Anti-static to Static dissipative, to help ensure the strategic objectives are met. 

The Perfect Envelope System

Cleanroom panels are an essential component of cleanroom construction in the semiconductor sector. The Cleanroom panels provide a critical barrier between the interior and exterior environments, helping to maintain all the required levels of cleanliness.

Within this sector, the cleanroom envelope that is created is an integral part of a dehumidification system. A dehumidification system is imperative to maintain the proper humidity levels to minimise moisture in the air or oxidation which can affect the quality and reliability of the semiconductor manufacturing process. A fully sealed panel system with multistage airlocks, i.e. staggered ISO 9-6 rooms with air filtration and air showers, alongside well-sealed doors will insulate the dry room and protect it from moisture ingress.

An ideal envelope system features low air leakage rates (with an overall infiltration target of less than 0.15m³/m²/hr(0.49ft³/ft²/hr)), prefabricated panels for housing services, and walkable ceilings and access routes to the main plant decks. The infiltration targets are a vital feature of dry rooms as it would be uneconomical to operate at dewpoints of minus 40°Fdp and below if you are working above 0.49ft³/ft²/hr (0.15m³/m²/hr).

Finishes For This Sector

As well as sealed doors, a pressure cascade regime via an airlock arrangement will minimise the effect of door usage. You will need interlocked airlocks if a facility features a rapid roller door. Pressure cascades further reduce infiltration, with critical areas maintained at 65Pa with specially designed shrouds located at exit points to create a curtain of dry air that helps reduce moisture transfer during door opening.

Doors should be fabricated from the same surface finish as the rest of the building envelope for a consistent surface resistivity strategy.

Panel selection in this sector for the cleanroom envelope is essential to ensure that all the points above are considered. Some additional features that also need to be considered are the panels’ surface resistivity.

A cleanroom in this sector is the decision of the panel finish. This finish needs to consider facility cleaning regimes, robustness, cleanliness and often most importantly within Battery, semiconductor and microelectronics industries, surface resistivity.

The Panel Core

Static dissipative plastics have a surface resistance of circa 10^6-10^9 ohms/cm and allow electrical charges to dissipate generally within milliseconds. Static dissipative materials allow the charges to flow to the ground more slowly and in a more controlled manner, preventing discharge to or from human contact.

Anti-static materials usually have a surface resistivity of 10^10 to 10^12 ohms/cm and inhibit triboelectric charging (the build-up of an electric charge by rubbing one material with another material). Anti-static plastics suppress initial charges, prevent the build-up of static electricity, and provide a very slow rate of decay of static charge from a hundredth of to several seconds. This can often act as a successful method for controlling building envelope charges in micro-electronic facilities.

Conductive and insulative panels are not appropriate due to the risk from conductive anti-insulative factors of electrostatic discharge (ESD), which can cause lithium to catch fire, or microelectronic components to fry.

The core requires careful consideration due to Electrostatic discharge (ESD) this needs to be carefully managed in a battery dry room as it can cause lithium to catch fire or micro-electronic components to fry. Panels with PIR or PU cores have particularly good insulative properties and cause particular risks in these environments. Instead, Aluminium honeycomb panels such as our Puracore range, with either Anti-Static or static dissipative facings, depending on the activity should be used.

They should also be able to be manipulated to incorporate superior fire protection systems, like gas detection equipment, in-rack sprinkler systems, and heat-seeking water cannons. These would usually be integrated into a walk-on or grid-ceiling system, these grid-ceiling systems also lend themselves to high levels of light and fan filter coverage offering laminar flow from above.

The use of a flush cleanroom system eliminates any trapping points allowing for particulate control, the incorporation of vision panels and doors can also be made flush to avoid dead zones in air flows and trapping points for particulate. There is a need for internal detailing within these environments, as this is crucial in achieving low infiltration rates by creating multiple sealing points. For instance, a vapour-proof barrier underneath flooring can improve air leakage rates, as can floor and ceiling coving sealed with cleanroom sealant.

A low surface spread of flame tested to ASTM E84 / EN13501 (as per our Puracore panels) is essential due to the unique fire hazards in the facilities.
Unidirectional flow is often the best solution for the particulate control needed with microelectronics and semiconductor production. This airflow strategy uses much more air than a non-unidirectional airflow system but because of the directed air movement, it minimises the spread of contamination around the room.

    • 80mm
      Wall Panels
    • 100mm
      Ceiling Panels
    Featured Case Study:

    Leading manufacturer of high quality semiconductors

    NXP Semiconductors are one of the leading manufacturers of high quality metal-oxide semiconductor field-effect transistors or MOSFETs for the automotive industry and a major player in supplying to computing, industrial and commercial markets.